The main objective of this section is to develop and conduct studies aimed at identifying the molecular basis of the biological processes involved in cancer causation. This implies addressing the basic mechanisms of carcinogenesis through experimental studies using cultured cells and animal models. The most direct outcome of this type of research is to identify, develop and validate innovative biomarkers, which may be applicable in large-scale studies on molecular epidemiology or pathology. The section’s skills cover two broad classes of molecular alterations that underpin the cancer process: mutations and epigenetic modifications. The main targets include hepatocellular carcinoma (search for new markers and understanding of the molecular mechanisms of the synergistic effects between distinct etiological risk factors), lung cancers (understanding the molecular mechanisms of genetic predisposition and of carcinogenesis in never-smokers), oesophageal cancers (identifying causal factors through molecular studies in high-risk populations in specific geographic areas), breast cancers (unravelling interactions between mutations and epigenetic changes in maintaining cancer stem cell status) and highly cancer predisposing inherited mutations (Li-Fraumeni Syndrome). The section’s work is integrated, with similar themes and sample collections being studied in both the Molecular Carcinogenesis Group (MOC) and the Epigenetics Group (EGE), thus fostering a pattern of technical and scientific interactions within the section and also with other research groups. Highlights of 2011 include important advances in identifying new biomarkers of liver carcinogenesis, defining the mechanisms by which polymorphisms in N-acetylcholine receptor genes contribute to the predisposition to lung cancer, understanding the role of the tumour suppressor p53 in breast cancer cells’ response to estrogens and new studies on the effects of diet on epigenetic DNA methylation patterns.
<table>
<thead>
<tr>
<th>Group head</th>
<th>Students</th>
<th>Laboratory technicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Pierre Hainaut (until 23 December 2011)</td>
<td>Ms Amina Amadou Yacouba (until November 2010)</td>
<td>Ms Lisley Inata Mambelli (until July 2011)</td>
</tr>
<tr>
<td>Ms Michelle Wrisez</td>
<td>Ms Anne-Lene Bøen (until June 2011)</td>
<td>Ms Kristine Laerkerod (until June 2011)</td>
</tr>
<tr>
<td>Scientists</td>
<td>Mr Edouard Bosvert (until February 2011)</td>
<td>Ms Pénélope Legros (until August 2010)</td>
</tr>
<tr>
<td>Dr Magali Olivier</td>
<td>Mr Fabian Cortes-Mancera (until December 2010)</td>
<td>Ms Myriam Lereau (until June 2010)</td>
</tr>
<tr>
<td>Dr Behnoush Abedi-Ardekani</td>
<td>Ms Nathalia de Oliveira Meireles da Costa (until July 2010)</td>
<td>Mr Nicolas Naudet (until September 2011)</td>
</tr>
<tr>
<td>Visiting scientists</td>
<td>Ms Yayun Dai</td>
<td>Ms Sandra Ortiz-Cuaran</td>
</tr>
<tr>
<td>Dr Behnoush Abedi-Ardekani (until November 2010)</td>
<td>Miss Daniela Ines dos Santos</td>
<td>Ms Patricia Ribeiro Izetti (until August 2011)</td>
</tr>
<tr>
<td>Dr Nagla Gasmelseed (until July 2010)</td>
<td>Ms Maëlle de Seze (until September 2011)</td>
<td>Ms Charlotte Sagne</td>
</tr>
<tr>
<td>Professor Regina Rogatto (until July 2011)</td>
<td>Ms Kelly Garnier (until September 2011)</td>
<td>Ms Chiara Scoccianti</td>
</tr>
<tr>
<td>Postdoctoral fellows</td>
<td>Mr Arnaud Genoux-Prachex (until August 2010)</td>
<td>Ms Frida Sighoko Mawadzoue</td>
</tr>
<tr>
<td>Dr Suresh Anaganti (until February 2010)</td>
<td>Ms Juliana Giacomazzi (until August 2011)</td>
<td>Ms Ke-seay Smoth (until June 2010)</td>
</tr>
<tr>
<td>Dr Nathalia de Oliveira Meireles da Costa (July–October 2011)</td>
<td>Ms Doriane Gouas</td>
<td>Mr Diego Fernando Uribe Yunda (until June 2011)</td>
</tr>
<tr>
<td>Dr André Nogueira da Costa</td>
<td>Mr Julien Felles (until March 2011)</td>
<td>Mr Pedro Vianna (until June 2010)</td>
</tr>
<tr>
<td></td>
<td>Ms Hind Hafsi</td>
<td></td>
</tr>
</tbody>
</table>
The Molecular Carcinogenesis Group (MOC) carries out projects in functional genomics aimed at better understanding the mechanisms of cancer and at identifying biomarkers for early detection. Studies focus on TP53, a major tumour suppressor in which the group has acquired a strong international position. This is due in part to the maintenance and dissemination of the IARC TP53 database, the most cited international resource in the field (http://www-p53.iarc.fr). Projects by MOC include: (1) mechanisms of liver carcinogenesis focusing on interactions between p53 and viral oncoproteins on regulating liver cell metabolism and differentiation; (2) role of TP53 mutations as prognosis and a predictive marker in breast cancer; (3) role of germline TP53 mutations in a large cohort of carriers from Brazil, where we have discovered a founder mutation which is present in 0.3% of the population; (4) regulation of stem cell status by p53 isoforms; and (5) discovery of new early detection markers for liver cancer. This section highlights some of the significant results in 2011, while our work on the functional significance of polymorphisms in nicotinic acetylcholine receptors (NACHR) for the genetic susceptibility to lung cancer is described in the Section of Genetics.

Cancer in Africa: from descriptive epidemiology to environmental carcinogenesis

Over the past 10 years, MOC has built a network of collaborations in Western and Eastern Africa involving local cancer registries, pathology services, clinical centres and local laboratories handling specimen collections and baseline biological analyses. Highlights of this work include the analysis of trends in incidence of liver cancer in West Africa, investigation on mutations induced by aflatoxin in HBV chronic carriers from rural Gambia and the first study on molecular markers in squamous cell carcinoma of the oesophagus in Kenya, West Africa. The current collaborative network includes projects in Mali (liver cancer, breast cancer, gastric cancer), in Kenya (oesophageal cancer) and in Sudan (oesophageal and liver cancers).

Our studies on recent trends in the incidence of liver cancer in West Africa have identified a significant increase in women only. We have proposed that this increase might be correlated with the documented increase in female obesity and metabolic disease. Using registration data from Mali and The Gambia, we have investigated the variations in breast cancer incidence and have shown that premenopausal breast cancer remains by far the most common form of the disease. Over the past 10 years, we have developed approaches and detection methods to measure aflatoxin-related mutations in DNA extracted from the plasma of patients with chronic liver disease or liver cancer. To analyse the relationship between detection of aflatoxin-induced TP53 mutations (R249S) in plasma DNA and consumption of aflatoxin-contaminated food, we have used short oligonucleotide mass analysis to detect R249S levels in plasma DNA in a cross-sectional survey of 473 asymptomatic subjects (237 HBV carriers and 236 non-carriers) recruited in three rural villages in The Gambia over a 10 month period. A seasonal variation was detected with significantly higher levels of mutation in HBsAg-positive subjects surveyed during April–July than in October–March (Figure 1). HBeAg positivity (a marker of HBV replication) and viral DNA load also varied seasonally with 15–30% of subjects surveyed between April and June being HBeAg-positive, compared with < 10% surveyed during other months. These results suggest that levels of R249S in plasma DNA of asymptomatic subjects are strongly influenced by HB chronic infection status. Moreover, levels of R249S show a seasonal variation that does not match the variations in exposure to AFB1: the peak of R249S in the plasma occurs 3–6 months later than the previously reported peak of exposure to AFB1. This difference may be the consequence of a chain of molecular events determined by the turnover of hepatocytes. These results demonstrate that mutagenesis of TP53 by AFB1 is a common event in subjects exposed to the toxin, not restricted to pre-cancer or cancer conditions. Thus, it has to be expected that additional genetic and epigenetic changes, subsequent to TP53 mutation and HBV chronic infection, play essential roles as drivers of hepatocarcinogenesis.

Figure 1. Levels of mutant TP53 DNA with mutation at third base of codon 249 (R249S, aflatoxin-related mutation) in the plasma of subjects from 3 rural villages in The Gambia, comparing between periods of higher exposure to AFB1 (December–March) and lower exposure (April to-July). The seasonality of R249S release in HBsAg-positive subjects is shown and contrasts with the seasonality of exposure to AFB1.
In Villar et al., 2011.
In Kenya we have developed a pilot study on retrospective cases of oesophageal squamous cell carcinoma (OSCC) in the region of Eldoret, which is documented as having a high prevalence of this cancer (detailed incidence data are not available). Studies on TP53 mutations and HPV prevalence revealed that both biomarkers were infrequent. In contrast with many high OSCC incidence areas, mutations in TP53 were detected in only about 25% of the cases, whereas HPV was not detected in any of the cases analysed. A similar, low proportion of cases with mutant TP53 have been previously reported in South Africa (Transkei). Overall, these preliminary data suggest that OSCC from eastern Africa may share common epidemiological and molecular patterns with those detected in South Africa.

Oesophageal cancer in the Islamic Republic of Iran

We have pursued our long-term effort in analysing patterns of genetic alterations in OSCC from Golestan, Iran, one of the regions of the world with the highest incidence rates for this cancer. Following the detection of a significant association between the immunological detection of PAH-adducts in oesophageal mucosa and risk of OSCC, we have completed an exhaustive analysis of TP53 mutations in 140 patients recruited in a case-control study. We detected mutations in over 90% of the cases, representing the highest rate of TP53 mutations ever identified in any form of cancer. The mutations were diverse, suggesting that multiple distinct mutagens and mutagenic mechanisms may contribute to the overall mutation load. Nevertheless, when compared to previously published data on OSCC from other parts of Iran, OSCC from Golestan showed a significantly higher proportion of mutations at bases known as sites of adduction by metabolites of PAH. This is consistent with our previous results that this class of mutagens represents one of the main risk factors in the etiology of OSCC in the region. In addition, we identified significant variations in mutation patterns in relation with hot tea drinking habits, further supporting the notion that thermal injury has a critical impact on mucosal regeneration and DNA repair capacity (Figure 2). These results support the view that OSCC in Northern Islamic Republic of Iran is not associated with exposure to a single class of mutagens, but develops in the context of combined effects of thermal stress and exposure to environmental mutagens on a background of susceptibility influenced by genetic and deprivation factors.

p53 isoforms and cancer susceptibility

Following our initial identification of the Delta40 (deltaN) isoform of the p53 protein, we have extended our work on the mechanisms regulating the expression of this isoform. Convergent results from our group and others show that this isoform, which lacks the first 40 amino acid residues of p53 that contains the transactivation domain, is expressed at significant levels in many normal cells and tissues where it may play a critical role in controlling the basal functions of p53 in regulation of stem cell status, proliferation, metabolism and senescence. In collaboration with the groups of JL Mergny and J Hall, we have found that a critical regulatory motif for the control of Delta40p53 expression lies in the intron 3 of TP53. This motif consists of a stretch of guanines which was shown to be able to fold into specific secondary structures in p53 pre-mRNA, called G-quadruplexes (G4) (Figure 3). These structures are common in genes involved in growth control, such as the MYC1 oncogene or HTERT encoding the human telomerase. Mutation of guanines in the G4 affects the splicing of p53 mRNA, leading to the retention of intron 2 and formation of an alternative splicing product that encodes Delta40p53. Significantly, the G4 structure in intron 3 overlaps with a common polymorphism in TP53, a 16bp repeat, which has been shown by us and others to have a strong impact on TP53-dependent genetic susceptibility. We have previously shown that this polymorphism is a strong modifier of age at cancer diagnosis in carriers of germline TP53 mutations who are at high risk for familial cancer. Studies in sporadic cancer have shown that the intron 3 polymorphism is associated with an increased risk for many common cancer forms. Therefore, it is possible that genetic susceptibility associated with intron 3 polymorphism may be due to differences caused by this polymorphism in the expression levels of Delta40p53 and in the basal activity of the p53 protein.

Discovery of novel plasma protein markers for early detection of hepatocellular carcinoma

In 2007, we launched a long-term effort to discover plasma proteins that could be used for the routine detection and
diagnosis of hepatocellular carcinoma (HCC) in regions of the world where this cancer is common and where diagnostic resources are limited. The current standard for blood-based detection is alpha-fetoprotein (AFP), a marker which is highly specific only at high levels where its sensitivity is limited. We implemented two mini case-control studies in The Gambia and Thailand, in which plasma has been collected in selected subjects with HCC (with or without cirrhosis), chronic liver disease and in controls (HBV chronic carriers or not). This collection was carried out using an optimized protocol for maintaining the integrity of plasma proteome. The two countries were chosen because they represent an etiological context dominated by HBV chronic infection with or without exposure to aflatoxin, which corresponds to the majority of HCC in low-resource countries. Our study is the first one to address the discovery of proteomics markers in this major etiological context. Thanks to a long-term collaboration with Dr Laura Berretta (FHCRC, Seattle), a proteomics pipe-line was used to extensively fractionate these plasmas and profile their content in low-abundance proteins. A total of over 3000 protein tags were identified. Comparison between cases and controls and between cases from Thailand and The Gambia has identified a set of 41 candidate markers, which contains all the protein markers already known to date. To validate these hits, we have developed a case-control study (n = 800) in Thailand and are currently developing a similar strategy in Mali. Other cohorts (developed by Dr Beretta) were also used. One of these candidate markers, osteopontin (OPN), has just emerged from this validation pipe-line. OPN levels were measured in 312 plasma samples collected from 131 HCC patients, 76 cirrhosis patients, 52 chronic hepatitis C (CHC) and B (CHB) patients and 53 healthy controls, in two independent cohorts. OPN plasma levels were significantly elevated in HCC patients compared to cirrhosis, CHC, CHB or healthy controls, in both cohorts. OPN alone or in combination with AFP had significantly better area under the receiver operating characteristic curve compared to AFP in comparing cirrhosis and HCC in both cohorts. OPN’s overall performance remained higher than AFP in comparing cirrhosis and the following HCC groups: HCV-related HCC, HBV-associated HCC and early HCC. OPN also had a good sensitivity in AFP negative HCC. In a pilot prospective study including 22 patients who developed HCC during follow-up, OPN was already elevated a year before diagnosis. In conclusion, OPN was more sensitive than AFP for the diagnosis of HCC in all studied HCC groups. These findings are the first published outcome of our long-term proteomics initiative. A group of three further markers are currently in the final stages of validation. We expect that these findings will have a direct impact on early detection and diagnosis of HCC in low-resource settings.

The MOC Group is grateful to the following persons for their collaboration:

Martine Piccart-Gebhart, Brussels, Belgium; Patricia Ashton Prolla, Porto Alegre, Felipe Ribeiro Pinto, Rio de Janeiro, Maria Isabel Waddington Achatz, Sao Paulo, Brazil; David Malkin, Toronto, Canada; Maria Christina Navas, Medellin, Colombia; Françoise Galateau and Gérard Zalcman, Caen, Jean François Mergny, Bordeaux, Christian and Elisabeth Brambilia, Grenoble, Denis Bourgeois, Isabelle Chemin, Maria-Paula Curado, Philippe Merle and Olivier Hantz, Jean Yves Scoazec, Christian Trepo, Lyon, Claude Sardet and Laurent LeCam, Montpellier, Janet Hall, Uwe Maskos, Paris, Philippe Birembaut and Jean Marie Tournier, Reims, Bénédicte Elena-Hermann, Villeurbanne, France; Reza Malekzadeh and Masoud Soutoudeh, Tehran, Iran; Giuseppe Viale, Milan, Italy; Kirtika Patel, Eldoret, Kenya; Sine Bayo, Bamako, Mali; AnneLise Boressen and Anita Langerod, Oslo, Norway; Amelle Plymoth, Klas Wiman, Stockholm, Sweden; Sulee Sangranjrang and Petcharin Srivatanakul, Bangkok, Thailand; John Field, Liverpool, Elio Riboli, Paolo Vineis, London, United Kingdom; Gerd Pfeifer, Duarte, Paolo Boffetta, New York, Simona Onjanovic, Minneapolis, Sandy Dawsey and Christian Abnet, Rockville, Laura Beretta and Paul Farley, Seattle, USA; Flor Pujol, Caracas, Venezuela;
Financial support from the following bodies is gratefully acknowledged:

Association pour la Recherche sur le Cancer (ARC), France
Institut National du Cancer (INCa), France
European Community
Ligue Nationale Contre le Cancer, Comité du Rhône, France

Publications

Epigenetics Group (EGE)

<table>
<thead>
<tr>
<th>Group head</th>
<th>Postdoctoral visitors</th>
<th>Visiting scientist</th>
<th>Students</th>
<th>Laboratory technicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Zdenko Herceg</td>
<td>Dr Vasily Aushev</td>
<td>Dr Jia Chen (until August 2011)</td>
<td>Mr Pierre-Benoit Ancey</td>
<td>Ms Marie-Pierre Cros</td>
</tr>
<tr>
<td>Dr Vladimir Krutoskikh</td>
<td>Dr Tomislav Horvat</td>
<td></td>
<td>Ms Jovita Castelino</td>
<td>Mr Cyrille Cuenin</td>
</tr>
<tr>
<td>Dr Héctor Hernandez Vargas</td>
<td>Dr Muhammad Umer</td>
<td></td>
<td>(until September 2011)</td>
<td></td>
</tr>
<tr>
<td>Mrs Asiedua Asante</td>
<td>(until June 2010)</td>
<td></td>
<td>(until July 2010)</td>
<td></td>
</tr>
<tr>
<td>Dr Puspinder Kaur</td>
<td>Dr Muhammad Umer</td>
<td></td>
<td>Ms Mylène Ferrand</td>
<td></td>
</tr>
<tr>
<td>(until July 2010)</td>
<td>(until December 2011)</td>
<td></td>
<td>(until May 2011)</td>
<td></td>
</tr>
<tr>
<td>Dr Ho-Sun Lee</td>
<td>Dr Muhammad Umer</td>
<td></td>
<td>Ms Srdjana Grgurevic</td>
<td></td>
</tr>
<tr>
<td>Dr Samson Mani</td>
<td>(until March 2011)</td>
<td></td>
<td>(until May 2010)</td>
<td></td>
</tr>
<tr>
<td>Dr Anupam Paliwal</td>
<td>(until April 2010)</td>
<td></td>
<td>Mr Clément Guillot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ms Marie-Pierre Lambert</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(until December 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ms Anna Lavayssiére</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ms Sheila Lima</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(until September 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ms Marion Martin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ms Maeve McCurtin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(until May 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ms Maria Ouzounova</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(until December 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ms Marion Pouget</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(until August 2011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ms Carla Sawan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(until September 2010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mr Thomas Vaissière</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(until January 2011)</td>
<td></td>
</tr>
</tbody>
</table>
Over the past decade epigenetics research has become more mainstream, owing to the fact that epigenetic changes have emerged as key mechanisms in cancer development and progression. Although the implication of epigenetic events in cancer is supported by both epidemiological and experimental studies, the precise contribution of epigenetic mechanisms and cellular targets of epigenetic alterations in human cancers are largely unknown. The intrinsic reversibility and ubiquity of epigenetic changes in virtually all types of human cancer make them attractive subjects for biomarker discovery and strategies for cancer prevention (Lima et al., 2010; Krutovskikh and Herceg, 2010; Sincic and Herceg, 2010; Rodríguez-Paredes and Esteller, 2011). The Epigenetics Group (EGE) conducts both mechanistic studies and epigenetic profiling, so as to gain a better mechanistic understanding of tumorigenesis, and to discover and validate new epigenetic biomarkers.

Analysis of DNA methylome in hepatocellular carcinoma reveals epigenetic signature associated with risk factors and potential cancer biomarkers

Hepatocellular carcinoma (HCC) is characterized by late detection and fast progression, and it is believed that epigenetic disruption may contribute to its development and progression. A better understanding of the global deregulation of epigenetic profiles (such as DNA methylation states) and how they correlate with disease progression, will aid in the design of strategies for earlier detection and cancer prevention. We characterized the changes in promoter DNA methylation in a series of HCCs, and their respective surrounding tissue, and identified methylation signatures associated with major risk factors and clinical correlates. A wide panel of cancer-related gene promoters was analysed using Illumina bead array technology, and CpG sites were then selected according to their ability to classify clinicopathological parameters. An independent series of HCC tumours and matched surrounding tissue was used to validate the signatures (Hernandez Vargas et al., 2010). While aberrant methylation of a subset of promoters was associated with tumour progression and etiological risk factors, such as HBV or HCV infection and alcohol consumption (Lambert et al., 2010), hypermethylation of an independent panel of genes was strongly correlated with survival after cancer therapy. We have further investigated methylation profiles of the HBV genome in liver samples of different stages of HCC development and in vitro infected human hepatocytes. We found discrete CpG sites in the HBV genome that are recurrently hypermethylated in cancer but not in chronic hepatitis tissue (Kaur et al., 2010). Our findings suggest that hypermethylation of the HBV genome itself, resulting from deregulated DNA methylation in malignant cells, may contribute to the occult status of the disease (Kaur et al., 2010). Together, our studies identified specific DNA methylation signatures associated with clinical correlates, as well as the major risk factors, providing information that could be exploited for biomarker discovery in clinics and molecular epidemiology (Hernandez Vargas et al., 2010; Lambert et al., 2010; Herceg and Paliwal, 2011).

Aberrant DNA methylation links cancer susceptibility locus 15q25.1 to apoptotic regulation and lung cancer

Nicotinic acetylcholine receptor (nAChR) genes form a highly conserved gene cluster at the lung cancer susceptibility
We found that the CHRNα3 gene encoding nAChRA3 subunit is a frequent target of aberrant DNA hypermethylation and silencing in lung cancer (Paliwal et al., 2010). Treatment of cancer cells exhibiting CHRNα3 hypermethylation with DNA methylation inhibitors caused demethylation of the CHRNα3 promoter and gene reactivation, whereas restoration of CHRNα3 levels through ectopic expression induced apoptotic cell death. shRNA-mediated depletion of CHRNα3 in CHRNα3-expressing lung cancer cells, elicited a dramatic Ca2+ influx response in the presence of nicotine, followed by activation of the Akt survival pathway. CHRNα3-depleted cells were resistant to apoptosis-inducing agents, underscoring the importance of epigenetic silencing of the CHRNα3 gene in human cancer (Paliwal et al., 2010). In defining a mechanism of epigenetic control of nAChR expression in non-neuronal tissues, our findings offer a functional link between susceptibility locus 15q25.1 and lung cancer, and suggest nAChRs as theranostic targets for cancer detection and chemoprevention (Paliwal et al., 2010; Krais et al., 2011; Herceg and Vaissière, 2011).

Identification of epigenetic changes in peripheral blood as biomarkers of exposure and cancer risk

The goal of this study is to investigate whether epigenetic changes in peripheral blood (such as WBC and circulating nucleic acids) can be used as intermediate biomarkers for risk factor exposures and different health outcomes.

DNA methylation changes associated with cancer risk factors and blood levels of vitamin metabolites in a prospective study. We tested whether genomic DNA from surrogate tissues, such as blood cells, may be exploited in the discovery of biomarkers of exposure and cancer risk. DNA methylation levels in a panel of candidate genes in blood cells of cases and controls from the European Prospective Investigation into Cancer and Nutrition (EPIC) study were quantitatively determined and the association between lung cancer risk and DNA methylation patterns was examined. We also investigated whether blood levels of vitamin metabolites modify DNA methylation levels in blood cells (Vineis et al., 2011). Our results revealed that DNA methylation patterns in specific genes are associated with the case/control status and that methylation levels are influenced by serum levels of 1-carbon metabolites and vitamin B. Interestingly, these associations were modulated by smoking status, consistent with the notion that blood levels of 1-carbon metabolism markers and dietary/lifestyle factors may modify DNA methylation levels in blood cells, and that blood cells can be exploited for the discovery of epigenetic biomarkers of exposures, providing proof-of-principle on the use of blood samples in the context of prospective studies (Vineis et al., 2011).

Impact of dietary regime on methylation patterns in peripheral blood in an intervention study. We conducted a randomized four week intervention trial to test the impact of three dietary regimens on DNA methylation patterns in peripheral white blood cells of heavy smokers (Scoccianti et al., 2011). We found that dietary intervention may induce small but significant modifications in the methylation patterns of long interspersed DNA elements (LINE1), a marker for global genome methylation, whereas several other loci analysed showed low basal levels of methylation with no substantial change after intervention. These results are consistent with the notion that balanced or supplemented diet may contribute to stabilizing normal, endogenous DNA methylation patterns, but does not provide evidence for methylation changes in specific genes associated with this short-term dietary intervention (Scoccianti et al., 2011; Herceg and Vaissière, 2011).

Experimental strategy for identification of molecular changes associated with hepatocellular carcinoma and risk factors

- **Isolation of DNA**
- **DNA sequencing**
- **DNA methylation profiling (MeDIP-seq, Illumina BroadAray)**
- **Identification of candidate genes**
- **Mechanistic studies**
- **Validation of biomarkers**

Identification of molecular changes associated with hepatocellular carcinoma and risk factors

- **Isolation of non-coding RNAs**
- **microRNA, IncRNA, cRNA expression analysis**

Impact of dietary regime on methylation patterns in peripheral blood in an intervention study. We conducted a randomized four week intervention trial to test the impact of three dietary regimens on DNA methylation patterns in peripheral white blood cells of heavy smokers (Scoccianti et al., 2011). We found that dietary intervention may induce small but significant modifications in the methylation patterns of long interspersed DNA elements (LINE1), a marker for global genome methylation, whereas several other loci analysed showed low basal levels of methylation with no substantial change after intervention. These results are consistent with the notion that balanced or supplemented diet may contribute to stabilizing normal, endogenous DNA methylation patterns, but does not provide evidence for methylation changes in specific genes associated with this short-term dietary intervention (Scoccianti et al., 2011; Herceg and Vaissière, 2011).
The EGE Group is grateful to the following persons for their collaboration:

Terry Dwyer, Melbourne, Australia; Felipe Pinto, Rio de Janeiro, Brazil; Chantal Matar, Ottawa, Canada; Gordan Lauc, Nino Sincic, Zagreb, Croatia; Marc Billaud, Saadi Khochbin, Claire Your’ch, Grenoble, Eric Julien, Claude Sardet, Montpellier, Isabelle Chemin, Alain Puisieux, Jean-Yves Scoazec, Christian Trepo, Qiong Wang, Fabien Zoulim, Lyon, Ahmed Amine Khamlichi, Toulouse, France; Zhao-Qi Wang, Jenna, Germany; Carlos Gonzalez, Barcelona, Spain; Elio Riboli, Paolo Vineis, London, Yun Yun Gong, Leeds, Caroline Relton, Newcastle, United Kingdom; Carlo Croce, Ohio, Bing Ren, San Diego, Vivek Shukla, Houston, USA.

Financial support from the following bodies is gratefully acknowledged:

- National Institutes of Health/National Cancer Institute (NIH/NCI), USA
- Institut National du Cancer, France
- Agence nationale de recherches sur le sida et les hépatites virales (ANRS), France
- Association pour la Recherche sur le Cancer (ARC), France
- Ligue Nationale (Française) Contre le Cancer, France
- Ligue Nationale Contre le Cancer, Comité du Rhône, France
- Ligue Nationale Contre le Cancer, Comité de Saône-et-Loire, France
- Ligue Nationale Contre le Cancer, Comité de la Loire, France

Publications

